

D1.3

Tools for the

automatic

segmentation and

identification of

lexicographic

content

Author(s): Andraž Repar, Simon Krek

Date: January 31, 2020

H2020-INFRAIA-2016-2017

Grant Agreement No. 731015

ELEXIS - European Lexicographic Infrastructure

D1.3 Tools for the automatic segmentation and

identification of lexicographic content

Deliverable Number: D1.3

Dissemination Level: Public

Delivery Date: January 31, 2019

Version: 1

Author(s): Andraž Repar, Simon

Krek

Project Acronym: ELEXIS

Project Full Title: European Lexicographic Infrastructure

Grant Agreement No.: 731015

 Deliverable/Document Information

Project Acronym: ELEXIS

Project Full Title: European Lexicographic Infrastructure

Grant Agreement No.: 731015

 Document History

Version Date Changes/Approval Author(s)/Approved by

January 20, 2020 Initial draft Andraž Repar

January 20, 2020 Internal revision Simon Krek

January 20, 2020 External evaluation Miloš Jakubíček

Table of Contents

1 About this report ... 1

2 Elexifier ... 2

2.1 Infrastracture .. 3

2.2 Use .. 3

2.3 XML transformation - basic concepts ... 3

2.3.1 Selector descriptions ... 4

2.3.2 Transformer descriptions .. 4

2.4 PDF transformation - basic concepts .. 7

3 User feedback ... 8

4 Expected impact .. 9

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

1

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

1 About this report

This report describes the tools for the automatic segmentation and identification of lexicographic

content, developed as part of the LEX1 infrastructure of ELEXIS.

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

2

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

2 Elexifier

Figure 1: Elexifier login screen.

Elexifier (elexifier.elex.is) is a cloud-based dictionary conversion service for conversion of legacy XML

and PDF dictionaries into a shared data format based on the Elexis Data Model (defined in deliverable

D1.2). It takes as input an XML or PDF dictionary and produces a TEI-compliant XML file in line with

the specifications described in the Elexis Data Model.

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

3

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

2.1 Infrastracture

The application consists of two Docker containers:

 Frontend: https://github.com/elexis-eu/elexifier

 Backend: https://github.com/elexis-eu/elexifier-api

The frontend is written in Angular. The backend is written in Python Flask and uses a Postgres

database. For local installation, see the instructions in the Github repository.

2.2 Use

On the login screen, create a new account or login with your Sketch Engine credentials. Then select

the XML or PDF module and upload a dictionary to get started. For detailed instructions, check the

User Guide.

2.3 XML transformation - basic concepts

To transform a custom XML dictionary into an Elexis Data Model compliant format, you need to define

a transformation, which specifies rules for transforming custom XML elements into Elexis Data model

core elements. The script https://github.com/elexis-eu/elexifier-

api/blob/master/app/transformator/dictTransformations3.py takes as input a JSON object with the

following members:

 entry — describes the selector for entry elements

 entry_lang — describes the transformer for the language attribute of the entries

 sense — describes the selector for sense elements

 hw — describes the transformer for headwords

 sec_hw — describes the transformer for secondary headwords

 pos — describes the transformer for part-of-speech tags

 hw_tr — describes the transformer for translations of headwords

 hw_tr_lang — describes the transformer for the language of the translations of headwords

 ex — describes the transformer for examples

 ex_tr — describes the transformer for translations of examples

 ex_tr_lang — describes the transformer for the language of the translations of examples

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

4

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

 def — describes the transformer for definitions

2.3.1 Selector descriptions

A selector is a rule that selects 0 or more elements in the input XML tree.

The description of a selector must be a JSON object. This object must contain an attribute named type,

whose value specifies the type the selector, plus one or more other attributes whose name and

meaning depends on the selector type.

The following types of selectors are currently supported:

Xpath selector: selects the nodes that match a given xpath expression (given in an attribute named

expr).

Example:{"type": "xpath", "expr": ".//example/text"}

Union selector: combines the results of several selectors (whose descriptions must be given as a JSON

array in an attribute named selectors).

Example:{"type": "union", "selectors": [...]}

Exclude selector: takes two selectors, left and right, and selects all those nodes which were selected

by left but not by right.

Example:{"type": "exclude", "left": {...}, "right": {...}}

2.3.2 Transformer descriptions

A transformer is a rule that describes which data from the input document must be transformed into

a certain type of element in the output document.

The description of a transformer must be a JSON object. This object must contain an attribute named

type, whose value specifies the type the transformer, plus one or more other attributes whose name

and meaning depends on the transformer type.

The following types of transformers are currently supported:

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

5

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

(1) Simple transformers

A simple transformer selects a set of elements and extracts an attribute or the inner text from these

elements; optionally applies a regular expression to the resulting text and returns the substring

matched by a specific group within the regular expression.

The JSON object that describes a simple transformer must contain the following attributes:

type: this must be the string "simple".

selector: a JSON object describing a selector.

attr: the name of an attribute (from the elements selected by the selector) whose value is to be

extracted.To extract the inner text of the element, instead of an attribute, use the pseudo-attribute

name "{http://elex.is/wp1/teiLex0Mapper/meta}innerText".To extract the inner text of the element

and all of its descendants, use "{http://elex.is/wp1/teiLex0Mapper/meta}innerTextRec".To return a

constant value instead of extracting the value of an attribute, use the pseudo-attribute name

"{http://elex.is/wp1/teiLex0Mapper/meta}constant".

rex: a regular expression that is applied to the value of the attribute attr. If this string does not contain

any match for this regular expression, the current element is not transformed (i.e. it is as if it hadn't

been selected by the selector at all). If there are several matches, the first one is used. This attribute

is optional. If present, it must use the Python regular expression syntax.

rexGroup: this attribute is optional. If present, it must be the name of one of the named groups

(?P<name>...) from the regular expression given by the attribute rex. In this case, only the string that

matched this named group will be used, rather than the entire value of the attribute attr.

const: this attribute should be present it attr was set to

"{http://elex.is/wp1/teiLex0Mapper/meta}constant", and should provide the constant value that you

want to return as the result of the transformation.

xlat: this attribute is optional. If present, it should be a hash table that will be used to transform the

string obtained from the previous steps (attribute lookup, regex matching). In other words, the string

s will be replaced by xlat[s] if s appears as a key in xlat (otherwise, s will remain unchanged, just as if

xlat had not been provided at all).

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

6

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

A simple example:

{ "type": "simple",

"selector": {"type": "xpath", "expr": ".//ExampleCtn//Locale"},

"attr": "lang" }

A more complex example:

{ "type": "simple",

"selector": {"type": "xpath", "expr": ".//sense/seg[1][@type='beleg']"},

"attr": "{http://elex.is/wp1/teiLex0Mapper/meta}innerTextRec"

"rex": "'(?P<insideQuotes>[^']*)'",

"rexGroup: "insideQuotes" }

This transformer selects the first <seg> in each <sense>, builds the inner text and extracts the first

substring delimited by single quote marks.

An example of a constant-output transformer (i.e. to assign language codes to XML elements):

{ "type": "simple",

 "selector": {"type: "xpath", "expr": ".//type"},

 "attr": "{http://elex.is/wp1/teiLex0Mapper/meta}constant",

 "const": "en" }

(2) Union transformers

A union transformer takes a set of simple transformers and performs all of their transformations. This

might be useful if you need to combine several different transformation rules, e.g. extract attribute

@a from instances of the element and also extract attribute @c from instances of the element

<d>.

The JSON object that describes a union transformer must contain the following attributes:

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

7

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

type: this must be the string "union".

transformers: an array of JSON objects describing the transformers that are to be combined.

2.4 PDF transformation - basic concepts

To transform a PDF dictionary, you need to annotate a sample of the PDF file. The PDF is first

transformed in flat structure using a pdf2xml conversion script (based on

https://github.com/kermitt2/pdf2xml). Then, a chunk of the resulting XML file is sent to Lexonomy for

manual annotation. In the next step, the annotations act as training data for the machine learning

algorithm. The following features are used by the algorithm: font, font-size, bold, italic, newline and

the token content itself.

Machine learning assumes a three-level structure with pages as first level base, entries as second level

base and senses as third level base. On the first level, entries are predicted for the second level to

work on, which in turn generates third level base - senses. A model is constructed for each level and

trained on 75% of the data annotated in lexonomy. Afterwards, labels for each token (separate word

or symbol in the dictionary) of the unlabelled data are predicted for each level. At first, unlabelled

data is only available for the first level, but through prediction, second and third level data is generated

as well, along with the labels. Labels are then used to wrap tokens into correct containers.

The model used is a recurrent neural network with two inputs for each input token: one-hot encoded

token features (such as font, size and so forth) and LSTM-encoded token contents. The two inputs are

merged and fed into a bidirectional LSTM, which then outputs a one-hot encoded label. Labels are

defined in the annotation and the model can adapt to different labels at different levels, depending

on the annotation structure.

Current results show great promise as they often exceed 90% f1 score (varies between levels and

datasets) and are achieved within a short training time. However, results are, as always in the field of

machine learning, significantly influenced by the quality of the annotation

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

8

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

3 User feedback

During development, we collected three batches of user feedback from a select group of project

partners: August 2019, November 2019 and January 2020. Several of the ideas presented by the users

were implemented in the application and we will continue to monitor user behaviour for possible

improvements.

__

D1.3 Tools for the automatic segmentation and identification of lexicographic content

9

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731015. The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the European Union.

4 Expected impact

As part of the LEX1 infrastructure, Elexifier will play an important role in the future of the ELEXIS

project, specifically in terms of feeding data to the Matrix Dictionary. It will allow lexicographers with

limited computer programming skills to efficienctly convert their legacy dictionaries into a

standardized common format and upload them to the Matrix Dictionary. The official launch of the

application is scheduled for the Project Management Board meeting in March in Ljubljana, Slovenia.

